Biometrical Letters Vol. 51(1), 2014, pp. 57-73
Kernel principal components (KPC) and kernel discriminant coordinates (KDC), which are the extensions of principal components and discriminant coordinates, respectively, from a linear domain to a nonlinear domain via the kernel trick, are two very popular nonlinear feature extraction methods. The kernel discriminant coordinates space has proven to be a very powerful space for pattern recognition. However, further study shows that there are still drawbacks in this method. To improve the performance of pattern recognition, we propose a new learning algorithm combining the advantages of KPC and KDC.
kernel principal components, kernel discriminant coordinates