Biometrical Letters Vol. 58(2), 2021, pp. 95-104
In the existing decomposition theorem, the sum-symmetry model holds if and only if both the exponential sum-symmetry and global symmetry models hold. However, this decomposition theorem does not satisfy the asymptotic equivalence for the test statistic. To address the aforementioned gap, this study establishes a decomposition theorem in which the sum-symmetry model holds if and only if both the exponential sum-symmetry and weighted global-sum-symmetry models hold. The proposed decomposition theorem satisfies the asymptotic equivalence for the test statistic. We demonstrate the advantages of the proposed decomposition theorem by applying it to datasets comprising real data and artificial data.
matched-pairs data, orthogonality, sum-symmetry model, test statistic